Newsflash

Perez, V., Leder, R. M., Lundgren, L. A., Ellis, S., Dunckel, B., & Crippen, K. J. (2020). The belgrade paleoblitz: a pilot project to engage amateur paleontologists. Palaeontologia Electronica, 23(1), 18a.

Vintage

Something Different for Joomla!

Creative Commons License

Open Ed

Blended Learning in K12 Science

Crippen, K. J., Bokor, J., & Evan, G. N. (in press). A Synthesis of the Empirical Research on Blended Learning in K-12 Science Education, 2000-2014. In R. E. Ferdig & K. Kennedy (Eds.), Handbook of Research on K-12 Online and Blended Learning (Vol. 2). Carnegie Mellon University: ETC Press.

See also - NARST 2016 Research Poster

Blended learning is a popular term for a mixture of online and face-to-face instruction that involves student-centered learning and a combination of teaching methods. However, the empirical basis for this educational approach is unclear, particularly in the context of K-12 science education. To address this issue, this study involved a systematic review of the following 90 papers that were published in science education research journals during the years 2000-2014 that met very specific inclusion criteria.

  1. Annetta, L., Mangrum, J., Holmes, S., Collazo, K., & Cheng, M. T. (2009). Bridging Reality to Virtual Reality: Investigating gender effect and student engagement on learning through video game play in an elementary school classroom. International Journal of Science Education, 31(8), 1091-1113. doi: 10.1080/09500690801968656
  2. Avsec, S., Rihtarsic, D., & Kocijancic, S. (2014). A Predictive Study of Learner Attitudes Toward Open Learning in a Robotics Class. Journal of Science Education and Technology, 23(5), 692-704. doi: 10.1007/s10956-014-9496-6
  3. Barab, S., Sadler, T., Heiselt, C., Hickey, D., & Zuiker, S. (2007). Relating Narrative, Inquiry, and Inscriptions: Supporting Consequential Play. Journal of Science Education and Technology, 16(1), 59-82. doi: 10.1007/s10956-006-9033-3
  4. Bell, P., & Linn, M. (2000). Scientific arguments as learning artifacts: designing for learning from the web with KIE. International Journal of Science Education, 22(8), 797-817. doi: 10.1080/095006900412284
  5. Berland, L. K., & Reiser, B. J. (2011). Classroom communities' adaptations of the practice of scientific argumentation. Science Education, 95(2), 191-216. doi: 10.1002/sce.20420
  6. Brooks, D., & Crippen, K. (2001). Learning Difficult Content Using the Web: Strategies Make a Difference. Journal of Science Education and Technology, 10(4), 283-285. doi: 10.1023/A:1012213700431
  7. Brown, B. A., & Ryoo, K. (2008). Teaching science as a language: A content-first approach to science teaching. Journal of Research in Science Teaching, 45(5), 529-553. doi: 10.1002/tea.20255
  8. Buck, Z. E., Lee, H.-S., & Flores, J. (2014). I Am Sure There May Be a Planet There: Student articulation of uncertainty in argumentation tasks. International Journal of Science Education, 36(14), 2391-2420. doi: 10.1080/09500693.2014.924641
  9. Buckley, B., Gobert, J., Kindfield, A. H., Horwitz, P., Tinker, R., Gerlits, B., . . . Willett, J. (2004). Model-Based Teaching and Learning with BioLogicaª: What Do They Learn? How Do They Learn? How Do We Know? Journal of Science Education and Technology, 13(1), 23-41. doi: 10.1023/B:JOST.0000019636.06814.e3
  10. Chang, H.-Y., & Chang, H.-C. (2012). Scaffolding StudentsÕ Online Critiquing of Expert- and Peer-generated Molecular Models of Chemical Reactions. International Journal of Science Education, 35(12), 2028-2056. doi: 10.1080/09500693.2012.733978
  11. Chang, H.-Y., & Linn, M. C. (2013). Scaffolding learning from molecular visualizations. Journal of Research in Science Teaching, 50(7), 858-886. doi: 10.1002/tea.21089
  12. Chase, C., Chin, D., Oppezzo, M., & Schwartz, D. (2009). Teachable Agents and the ProtŽgŽ Effect: Increasing the Effort Towards Learning. Journal of Science Education and Technology, 18(4), 334-352. doi: 10.1007/s10956-009-9180-4
  13. Clark, D., & Jorde, D. (2004). Helping students revise disruptive experientially supported ideas about thermodynamics: Computer visualizations and tactile models. Journal of Research in Science Teaching, 41(1), 1-23. doi: 10.1002/tea.10097
  14. Clark, D. B., & Sampson, V. (2008). Assessing dialogic argumentation in online environments to relate structure, grounds, and conceptual quality. Journal of Research in Science Teaching, 45(3), 293-321. doi: 10.1002/tea.20216
  15. Clark, D. B., & Sampson, V. D. (2007). Personally Seeded Discussions to Scaffold Online Argumentation. International Journal of Science Education, 29(3), 253-277. doi: 10.1080/09500690600560944
  16. Clark, D. B., & Slotta, J. D. (2000). Evaluating media-enhancement and source authority on the internet: the Knowledge Integration Environment. International Journal of Science Education, 22(8), 859-871. doi: 10.1080/095006900412310
  17. Crippen, K., & Brooks, D. (2005). The AP Descriptive Chemistry Question: Student Errors. Journal of Computers in Mathematics and Science Teaching, 24(4), 357-366.
  18. Crippen, K. J., & Brooks, D. W. (2002). An Analysis of Student Learning at a Testing Web Site Emphasizing Descriptive Chemistry. Journal of Computers in Mathematics and Science Teaching, 21(2), 183-201.
  19. Cuthbert, A. J., & Slotta, J. D. (2004). RESEARCH REPORT. International Journal of Science Education, 26(7), 821-844. doi: 10.1080/0950069032000119429
  20. Davis, E. A., & Linn, M. C. (2000). Scaffolding students' knowledge integration: prompts for reflection in KIE. International Journal of Science Education, 22(8), 819-837. doi: 10.1080/095006900412293
  21. Donnelly, D. F., McGarr, O., & O'Reilly, J. (2014). ÔJust Be Quiet and Listen to Exactly What He's Saying': Conceptualising power relations in inquiry-oriented classrooms. International Journal of Science Education, 36(12), 2029-2054. doi: 10.1080/09500693.2014.889867
  22. Frailich, M., Kesner, M., & Hofstein, A. (2007). The influence of web based chemistry learning on students' perceptions, attitudes, and achievements. Research in Science & Technological Education, 25(2), 179-197. doi: 10.1080/02635140701250659
  23. Frailich, M., Kesner, M., & Hofstein, A. (2009). Enhancing students' understanding of the concept of chemical bonding by using activities provided on an interactive website. Journal of Research in Science Teaching, 46(3), 289-310. doi: 10.1002/tea.20278
  24. Furberg, A., & Ludvigsen, S. (2008). Students' Meaning making of Socio scientific Issues in Computer Mediated Settings: Exploring learning through interaction trajectories. International Journal of Science Education, 30(13), 1775-1799. doi: 10.1080/09500690701543617
  25. Gelbart, H., Brill, G., & Yarden, A. (2009). The Impact of a Web-Based Research Simulation in Bioinformatics on StudentsÕ Understanding of Genetics. Research in Science Education, 39(5), 725-751. doi: 10.1007/s11165-008-9101-1
  26. Hansson, L., Redfors, A., & Rosberg, M. (2011). Students Socio-Scientific Reasoning in an Astrobiological Context During Work with a Digital Learning Environment. Journal of Science Education and Technology, 20(4), 388-402. doi: 10.1007/s10956-010-9260-5
  27. Hickey, D., Ingram-Goble, A., & Jameson, E. (2009). Designing Assessments and Assessing Designs in Virtual Educational Environments. Journal of Science Education and Technology, 18(2), 187-208. doi: 10.1007/s10956-008-9143-1
  28. Hickey, D. T., Taasoobshirazi, G., & Cross, D. (2012). Assessment as learning: Enhancing discourse, understanding, and achievement in innovative science curricula. Journal of Research in Science Teaching, 49(10), 1240-1270. doi: 10.1002/tea.21056
  29. Hoadley, C. M. (2000). Teaching science through online, peer discussions: SpeakEasy in the Knowledge Integration Environment. International Journal of Science Education, 22(8), 839-857. doi: 10.1080/095006900412301
  30. Hoffman, J. L., Wu, H.-K., Krajcik, J. S., & Soloway, E. (2003). The nature of middle school learners' science content understandings with the use of on-line resources. Journal of Research in Science Teaching, 40(3), 323-346. doi: 10.1002/tea.10079
  31. Hsu, Y.-S. (2008). Learning about seasons in a technologically enhanced environment: The impact of teacher-guided and student-centered instructional approaches on the process of students' conceptual change. Science Education, 92(2), 320-344. doi: 10.1002/sce.20242
  32. Jang, S. J. (2006). The Effects of Incorporating Web assisted Learning with Team Teaching in Seventh grade Science Classes. International Journal of Science Education, 28(6), 615-632. doi: 10.1080/09500690500339753
  33. Jones, M. G., Minogue, J., Tretter, T. R., Negishi, A., & Taylor, R. (2006). Haptic augmentation of science instruction: Does touch matter? Science Education, 90(1), 111-123. doi: 10.1002/sce.20086
  34. Kafai, Y. (2008). Understanding Virtual Epidemics: Childrens Folk Conceptions of a Computer Virus. Journal of Science Education and Technology, 17(6), 523-529. doi: 10.1007/s10956-008-9102-x
  35. Kay, R., & Knaack, L. (2007). Evaluating the Use of Learning Objects for Secondary School Science. Journal of Computers in Mathematics and Science Teaching, 26(4), 261-289.
  36. Kerlin, S., Carlsen, W., Kelly, G., & Goehring, E. (2013). Global Learning Communities: A Comparison of Online Domestic and International Science Class Partnerships. Journal of Science Education and Technology, 22(4), 475-487. doi: 10.1007/s10956-012-9407-7
  37. Ketelhut, D. (2007). The Impact of Student Self-efficacy on Scientific Inquiry Skills: An Exploratory Investigation in River City, a Multi-user Virtual Environment. Journal of Science Education and Technology, 16(1), 99-111. doi: 10.1007/s10956-006-9038-y
  38. Klisch, Y., Miller, L., Wang, S., & Epstein, J. (2012). The Impact of a Science Education Game on Students Learning and Perception of Inhalants as Body Pollutants. Journal of Science Education and Technology, 21(2), 295-303. doi: 10.1007/s10956-011-9319-y
  39. Kukkonen, J. E., KŠrkkŠinen, S., Dillon, P., & Keinonen, T. (2013). The Effects of Scaffolded Simulation-Based Inquiry Learning on Fifth-Graders' Representations of the Greenhouse Effect. International Journal of Science Education, 36(3), 406-424. doi: 10.1080/09500693.2013.782452
  40. Lamb, R., & Annetta, L. (2013). The Use of Online Modules and the Effect on Student Outcomes in a High School Chemistry Class. Journal of Science Education and Technology, 22(5), 603-613. doi: 10.1007/s10956-012-9417-5
  41. Lee, H.-S., Linn, M. C., Varma, K., & Liu, O. L. (2010). How do technology-enhanced inquiry science units impact classroom learning? Journal of Research in Science Teaching, 47(1), 71-90. doi: 10.1002/tea.20304
  42. Levy, D. (2013). How Dynamic Visualization Technology can Support Molecular Reasoning. Journal of Science Education and Technology, 22(5), 702-717. doi: 10.1007/s10956-012-9424-6
  43. Lowe, D., Newcombe, P., & Stumpers, B. (2013). Evaluation of the Use of Remote Laboratories for Secondary School Science Education. Research in Science Education, 43(3), 1197-1219. doi: 10.1007/s11165-012-9304-3
  44. Lumpe, A., & Butler, K. (2002). The Information Seeking Strategies of High School Science Students. Research in Science Education, 32(4), 549-566. doi: 10.1023/A:1022415924768
  45. Marino, M., Israel, M., Beecher, C., & Basham, J. (2013). StudentsÕ and TeachersÕ Perceptions of Using Video Games to Enhance Science Instruction. Journal of Science Education and Technology, 22(5), 667-680. doi: 10.1007/s10956-012-9421-9
  46. McElhaney, K. W., & Linn, M. C. (2011). Investigations of a complex, realistic task: Intentional, unsystematic, and exhaustive experimenters. Journal of Research in Science Teaching, 48(7), 745-770. doi: 10.1002/tea.20423
  47. Mistler-Jackson, M., & Butler Songer, N. (2000). Student Motivation and Internet Technology: Are Students Empowered to Learn Science? Journal of Research in Science Teaching, 37(5), 459-479. doi: 10.1002/(SICI)1098-2736(200005)37:5<459::AID-TEA5>3.0.CO;2-C
  48. Morgan, K., & Brooks, D. (2012). Investigating a Method of Scaffolding Student-Designed Experiments. Journal of Science Education and Technology, 21(4), 513-522. doi: 10.1007/s10956-011-9343-y
  49. Nelson, B. (2007). Exploring the Use of Individualized, Reflective Guidance In an Educational Multi-User Virtual Environment. Journal of Science Education and Technology, 16(1), 83-97. doi: 10.1007/s10956-006-9039-x
  50. Neulight, N., Kafai, Y., Kao, L., Foley, B., & Galas, C. (2007). ChildrenÕs Participation in a Virtual Epidemic in the Science Classroom: Making Connections to Natural Infectious Diseases. Journal of Science Education and Technology, 16(1), 47-58. doi: 10.1007/s10956-006-9029-z
  51. Nicolaidou, I., Kyza, E. A., Terzian, F., Hadjichambis, A., & Kafouris, D. (2011). A framework for scaffolding students' assessment of the credibility of evidence. Journal of Research in Science Teaching, 48(7), 711-744. doi: 10.1002/tea.20420
  52. Pallant, A., & Tinker, R. (2004). Reasoning with Atomic-Scale Molecular Dynamic Models. Journal of Science Education and Technology, 13(1), 51-66. doi: 10.1023/B:JOST.0000019638.01800.d0
  53. Park, H., Khan, S., & Petrina, S. (2009). ICT in Science Education: A quasi experimental study of achievement, attitudes toward science, and career aspirations of Korean middle school students. International Journal of Science Education, 31(8), 993-1012. doi: 10.1080/09500690701787891
  54. Pata, K., & Sarapuu, T. (2006). A Comparison of Reasoning Processes in a Collaborative Modelling Environment: Learning about genetics problems using virtual chat. International Journal of Science Education, 28(11), 1347-1368. doi: 10.1080/09500690500438670
  55. Riess, W., & Mischo, C. (2009). Promoting Systems Thinking through Biology Lessons. International Journal of Science Education, 32(6), 705-725. doi: 10.1080/09500690902769946
  56. Ryoo, K., & Linn, M. C. (2012). Can dynamic visualizations improve middle school students' understanding of energy in photosynthesis? Journal of Research in Science Teaching, 49(2), 218-243. doi: 10.1002/tea.21003
  57. Ryoo, K., & Linn, M. C. (2014). Designing guidance for interpreting dynamic visualizations: Generating versus reading explanations. Journal of Research in Science Teaching, 51(2), 147-174. doi: 10.1002/tea.21128
  58. She, H.-C., & Liao, Y.-W. (2010). Bridging scientific reasoning and conceptual change through adaptive web-based learning. Journal of Research in Science Teaching, 47(1), 91-119. doi: 10.1002/tea.20309
  59. Shegog, R., Lazarus, M., Murray, N., Diamond, P., Sessions, N., & Zsigmond, E. (2012). Virtual Transgenics: Using a Molecular Biology Simulation to Impact Student Academic Achievement and Attitudes. Research in Science Education, 42(5), 875-890. doi: 10.1007/s11165-011-9216-7
  60. Shen, J., & Linn, M. C. (2010). A Technology Enhanced Unit of Modeling Static Electricity: Integrating scientific explanations and everyday observations. International Journal of Science Education, 33(12), 1597-1623. doi: 10.1080/09500693.2010.514012
  61. Smetana, L. K., & Bell, R. L. (2012). Computer Simulations to Support Science Instruction and Learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337-1370. doi: 10.1080/09500693.2011.605182
  62. Stieff, M. (2011). Improving representational competence using molecular simulations embedded in inquiry activities. Journal of Research in Science Teaching, 48(10), 1137-1158. doi: 10.1002/tea.20438
  63. Sun, D., & Looi, C.-K. (2013). Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry. Journal of Science Education and Technology, 22(1), 73-89. doi: 10.1007/s10956-012-9377-9
  64. Svihla, V., & Linn, M. C. (2011). A Design-based Approach to Fostering Understanding of Global Climate Change. International Journal of Science Education, 34(5), 651-676. doi: 10.1080/09500693.2011.597453
  65. Tekos, G., & Solomonidou, C. (2009). Constructivist Learning and Teaching of Optics Concepts Using ICT Tools in Greek Primary School: A Pilot Study. Journal of Science Education and Technology, 18(5), 415-428. doi: 10.1007/s10956-009-9158-2
  66. Tsai, C.-Y., Jack, B., Huang, T.-C., & Yang, J.-T. (2012). Using the Cognitive Apprenticeship Web-based Argumentation System to Improve Argumentation Instruction. Journal of Science Education and Technology, 21(4), 476-486. doi: 10.1007/s10956-011-9339-7
  67. Tsui, C.-Y., & Treagust, D. (2003). Genetics Reasoning with Multiple External Representations. Research in Science Education, 33(1), 111-135. doi: 10.1023/A:1023685706290
  68. Tsui, C.-Y., & Treagust, D. F. (2007). Understanding genetics: Analysis of secondary students' conceptual status. Journal of Research in Science Teaching, 44(2), 205-235. doi: 10.1002/tea.20116
  69. Tsui, C. Y., & Treagust *, D. F. (2004). Conceptual change in learning genetics: an ontological perspective. Research in Science & Technological Education, 22(2), 185-202. doi: 10.1080/0263514042000290895
  70. Turcotte, S. (2012). Computer-Supported Collaborative Inquiry on Buoyancy: A Discourse Analysis Supporting the ÒPiecesÓ Position on Conceptual Change. Journal of Science Education and Technology, 21(6), 808-825. doi: 10.1007/s10956-012-9368-x
  71. †len, S.,  agran, B., Slavinec, M., & Gerli , I. (2014). Designing and Evaluating the Effectiveness of Physlet-Based Learning Materials in Supporting Conceptual Learning in Secondary School Physics. Journal of Science Education and Technology, 23(5), 658-667. doi: 10.1007/s10956-014-9492-x
  72. van Borkulo, S., van Joolingen, W., Savelsbergh, E., & de Jong, T. (2012). What Can Be Learned from Computer Modeling? Comparing Expository and Modeling Approaches to Teaching Dynamic Systems Behavior. Journal of Science Education and Technology, 21(2), 267-275. doi: 10.1007/s10956-011-9314-3
  73. van Rens, L., Hermarij, P., Pilot, A., Beishuizen, J., Hofman, H., & Wal, M. (2014). Pre-university Chemistry Students in a Mimicked Scholarly Peer Review. International Journal of Science Education, 36(15), 2514-2533. doi: 10.1080/09500693.2014.895447
  74. Varma, K., & Linn, M. (2012). Using Interactive Technology to Support Students Understanding of the Greenhouse Effect and Global Warming. Journal of Science Education and Technology, 21(4), 453-464. doi: 10.1007/s10956-011-9337-9
  75. Waight, N., & Abd-El-Khalick, F. (2011). From scientific practice to high school science classrooms: Transfer of scientific technologies and realizations of authentic inquiry. Journal of Research in Science Teaching, 48(1), 37-70. doi: 10.1002/tea.20393
  76. Waight, N., & Gillmeister, K. (2014). Teachers and StudentsÕ Conceptions of Computer-Based Models in the Context of High School Chemistry: Elicitations at the Pre-intervention Stage. Research in Science Education, 44(2), 335-361. doi: 10.1007/s11165-013-9385-7
  77. Williams, M., DeBarger, A. H., Montgomery, B. L., Zhou, X., & Tate, E. (2012). Exploring middle school students' conceptions of the relationship between genetic inheritance and cell division. Science Education, 96(1), 78-103. doi: 10.1002/sce.20465
  78. Williams, M., & Linn, M. (2002). WISE Inquiry in Fifth Grade Biology. Research in Science Education, 32(4), 415-436. doi: 10.1023/A:1022452719316
  79. Wu, H.-K., & Huang, Y.-L. (2007). Ninth-grade student engagement in teacher-centered and student-centered technology-enhanced learning environments. Science Education, 91(5), 727-749. doi: 10.1002/sce.20216
  80. Yang, K.-Y., & Heh, J.-S. (2007). The Impact of Internet Virtual Physics Laboratory Instruction on the Achievement in Physics, Science Process Skills and Computer Attitudes of 10th-Grade Students. Journal of Science Education and Technology, 16(5), 451-461. doi: 10.1007/s10956-007-9062-6
  81. Yarden, H., & Yarden, A. (2010). Learning Using Dynamic and Static Visualizations: Students Comprehension, Prior Knowledge and Conceptual Status of a Biotechnological Method. Research in Science Education, 40(3), 375-402. doi: 10.1007/s11165-009-9126-0
  82. Yen, H.-C., Tuan, H.-L., & Liao, C.-H. (2011). Investigating the Influence of Motivation on StudentsÕ Conceptual Learning Outcomes in Web-based vs. Classroom-based Science Teaching Contexts. Research in Science Education, 41(2), 211-224. doi: 10.1007/s11165-009-9161-x
  83. Yerushalmi, E., Puterkovsky, M., & Bagno, E. (2013). Knowledge Integration While Interacting with an Online Troubleshooting Activity. Journal of Science Education and Technology, 22(4), 463-474. doi: 10.1007/s10956-012-9406-8
  84. Yoon, S. A. (2007). An Evolutionary Approach to Harnessing Complex Systems Thinking in the Science and Technology Classroom. International Journal of Science Education, 30(1), 1-32. doi: 10.1080/09500690601101672
  85. Zhang, Z. H., & Linn, M. C. (2011). Can generating representations enhance learning with dynamic visualizations? Journal of Research in Science Teaching, 48(10), 1177-1198. doi: 10.1002/tea.20443
  86. Zhang, Z. H., & Linn, M. C. (2013). Learning from Chemical Visualizations: Comparing generation and selection. International Journal of Science Education, 35(13), 2174-2197. doi: 10.1080/09500693.2013.792971
  87. Zheng, B., Warschauer, M., Hwang, J., & Collins, P. (2014). Laptop Use, Interactive Science Software, and Science Learning Among At-Risk Students. Journal of Science Education and Technology, 23(4), 591-603. doi: 10.1007/s10956-014-9489-5
  88. Zion, M. (2008). On line Forums as a `Rescue Net' in an Open Inquiry Process. International Journal of Science and Mathematics Education, 6(2), 351-375. doi: 10.1007/s10763-006-9051-x
  89. Zucker, A., & Hug, S. (2008). Teaching and Learning Physics in a 1:1 Laptop School. Journal of Science Education and Technology, 17(6), 586-594. doi: 10.1007/s10956-008-9125-3
  90. Zucker, A., Kay, R., & Staudt, C. (2014). Helping Students Make Sense of Graphs: An Experimental Trial of SmartGraphs Software. Journal of Science Education and Technology, 23(3), 441-457. doi: 10.1007/s10956-013-9475-3