Newsflash

Lundgren, L. M., & Crippen, K. J. (2017). Developing social paleontology: A case study implementing innovative social media applications. In D. Remenyl (Ed.), The Social Media in Practice Excellence Awards 2017 at ECSM 2017: An Anthology of Case Histories (pp. 11-26). Reading, UK: Academic Conferences and Publishing International Limited (ACPIL).

Vintage

Something Different for Joomla!

Powered by CoalaWeb

Search

UF

Creative Commons License

Open Ed

Blended Learning in K12 Science

Crippen, K. J., Bokor, J., & Evan, G. N. (in press). A Synthesis of the Empirical Research on Blended Learning in K-12 Science Education, 2000-2014. In R. E. Ferdig & K. Kennedy (Eds.), Handbook of Research on K-12 Online and Blended Learning (Vol. 2). Carnegie Mellon University: ETC Press.

See also - NARST 2016 Research Poster

Blended learning is a popular term for a mixture of online and face-to-face instruction that involves student-centered learning and a combination of teaching methods. However, the empirical basis for this educational approach is unclear, particularly in the context of K-12 science education. To address this issue, this study involved a systematic review of the following 90 papers that were published in science education research journals during the years 2000-2014 that met very specific inclusion criteria.

  1. Annetta, L., Mangrum, J., Holmes, S., Collazo, K., & Cheng, M. T. (2009). Bridging Reality to Virtual Reality: Investigating gender effect and student engagement on learning through video game play in an elementary school classroom. International Journal of Science Education, 31(8), 1091-1113. doi: 10.1080/09500690801968656
  2. Avsec, S., Rihtarsic, D., & Kocijancic, S. (2014). A Predictive Study of Learner Attitudes Toward Open Learning in a Robotics Class. Journal of Science Education and Technology, 23(5), 692-704. doi: 10.1007/s10956-014-9496-6
  3. Barab, S., Sadler, T., Heiselt, C., Hickey, D., & Zuiker, S. (2007). Relating Narrative, Inquiry, and Inscriptions: Supporting Consequential Play. Journal of Science Education and Technology, 16(1), 59-82. doi: 10.1007/s10956-006-9033-3
  4. Bell, P., & Linn, M. (2000). Scientific arguments as learning artifacts: designing for learning from the web with KIE. International Journal of Science Education, 22(8), 797-817. doi: 10.1080/095006900412284
  5. Berland, L. K., & Reiser, B. J. (2011). Classroom communities' adaptations of the practice of scientific argumentation. Science Education, 95(2), 191-216. doi: 10.1002/sce.20420
  6. Brooks, D., & Crippen, K. (2001). Learning Difficult Content Using the Web: Strategies Make a Difference. Journal of Science Education and Technology, 10(4), 283-285. doi: 10.1023/A:1012213700431
  7. Brown, B. A., & Ryoo, K. (2008). Teaching science as a language: A content-first approach to science teaching. Journal of Research in Science Teaching, 45(5), 529-553. doi: 10.1002/tea.20255
  8. Buck, Z. E., Lee, H.-S., & Flores, J. (2014). I Am Sure There May Be a Planet There: Student articulation of uncertainty in argumentation tasks. International Journal of Science Education, 36(14), 2391-2420. doi: 10.1080/09500693.2014.924641
  9. Buckley, B., Gobert, J., Kindfield, A. H., Horwitz, P., Tinker, R., Gerlits, B., . . . Willett, J. (2004). Model-Based Teaching and Learning with BioLogicaª: What Do They Learn? How Do They Learn? How Do We Know? Journal of Science Education and Technology, 13(1), 23-41. doi: 10.1023/B:JOST.0000019636.06814.e3
  10. Chang, H.-Y., & Chang, H.-C. (2012). Scaffolding StudentsÕ Online Critiquing of Expert- and Peer-generated Molecular Models of Chemical Reactions. International Journal of Science Education, 35(12), 2028-2056. doi: 10.1080/09500693.2012.733978
  11. Chang, H.-Y., & Linn, M. C. (2013). Scaffolding learning from molecular visualizations. Journal of Research in Science Teaching, 50(7), 858-886. doi: 10.1002/tea.21089
  12. Chase, C., Chin, D., Oppezzo, M., & Schwartz, D. (2009). Teachable Agents and the ProtŽgŽ Effect: Increasing the Effort Towards Learning. Journal of Science Education and Technology, 18(4), 334-352. doi: 10.1007/s10956-009-9180-4
  13. Clark, D., & Jorde, D. (2004). Helping students revise disruptive experientially supported ideas about thermodynamics: Computer visualizations and tactile models. Journal of Research in Science Teaching, 41(1), 1-23. doi: 10.1002/tea.10097
  14. Clark, D. B., & Sampson, V. (2008). Assessing dialogic argumentation in online environments to relate structure, grounds, and conceptual quality. Journal of Research in Science Teaching, 45(3), 293-321. doi: 10.1002/tea.20216
  15. Clark, D. B., & Sampson, V. D. (2007). Personally Seeded Discussions to Scaffold Online Argumentation. International Journal of Science Education, 29(3), 253-277. doi: 10.1080/09500690600560944
  16. Clark, D. B., & Slotta, J. D. (2000). Evaluating media-enhancement and source authority on the internet: the Knowledge Integration Environment. International Journal of Science Education, 22(8), 859-871. doi: 10.1080/095006900412310
  17. Crippen, K., & Brooks, D. (2005). The AP Descriptive Chemistry Question: Student Errors. Journal of Computers in Mathematics and Science Teaching, 24(4), 357-366.
  18. Crippen, K. J., & Brooks, D. W. (2002). An Analysis of Student Learning at a Testing Web Site Emphasizing Descriptive Chemistry. Journal of Computers in Mathematics and Science Teaching, 21(2), 183-201.
  19. Cuthbert, A. J., & Slotta, J. D. (2004). RESEARCH REPORT. International Journal of Science Education, 26(7), 821-844. doi: 10.1080/0950069032000119429
  20. Davis, E. A., & Linn, M. C. (2000). Scaffolding students' knowledge integration: prompts for reflection in KIE. International Journal of Science Education, 22(8), 819-837. doi: 10.1080/095006900412293
  21. Donnelly, D. F., McGarr, O., & O'Reilly, J. (2014). ÔJust Be Quiet and Listen to Exactly What He's Saying': Conceptualising power relations in inquiry-oriented classrooms. International Journal of Science Education, 36(12), 2029-2054. doi: 10.1080/09500693.2014.889867
  22. Frailich, M., Kesner, M., & Hofstein, A. (2007). The influence of web based chemistry learning on students' perceptions, attitudes, and achievements. Research in Science & Technological Education, 25(2), 179-197. doi: 10.1080/02635140701250659
  23. Frailich, M., Kesner, M., & Hofstein, A. (2009). Enhancing students' understanding of the concept of chemical bonding by using activities provided on an interactive website. Journal of Research in Science Teaching, 46(3), 289-310. doi: 10.1002/tea.20278
  24. Furberg, A., & Ludvigsen, S. (2008). Students' Meaning making of Socio scientific Issues in Computer Mediated Settings: Exploring learning through interaction trajectories. International Journal of Science Education, 30(13), 1775-1799. doi: 10.1080/09500690701543617
  25. Gelbart, H., Brill, G., & Yarden, A. (2009). The Impact of a Web-Based Research Simulation in Bioinformatics on StudentsÕ Understanding of Genetics. Research in Science Education, 39(5), 725-751. doi: 10.1007/s11165-008-9101-1
  26. Hansson, L., Redfors, A., & Rosberg, M. (2011). Students Socio-Scientific Reasoning in an Astrobiological Context During Work with a Digital Learning Environment. Journal of Science Education and Technology, 20(4), 388-402. doi: 10.1007/s10956-010-9260-5
  27. Hickey, D., Ingram-Goble, A., & Jameson, E. (2009). Designing Assessments and Assessing Designs in Virtual Educational Environments. Journal of Science Education and Technology, 18(2), 187-208. doi: 10.1007/s10956-008-9143-1
  28. Hickey, D. T., Taasoobshirazi, G., & Cross, D. (2012). Assessment as learning: Enhancing discourse, understanding, and achievement in innovative science curricula. Journal of Research in Science Teaching, 49(10), 1240-1270. doi: 10.1002/tea.21056
  29. Hoadley, C. M. (2000). Teaching science through online, peer discussions: SpeakEasy in the Knowledge Integration Environment. International Journal of Science Education, 22(8), 839-857. doi: 10.1080/095006900412301
  30. Hoffman, J. L., Wu, H.-K., Krajcik, J. S., & Soloway, E. (2003). The nature of middle school learners' science content understandings with the use of on-line resources. Journal of Research in Science Teaching, 40(3), 323-346. doi: 10.1002/tea.10079
  31. Hsu, Y.-S. (2008). Learning about seasons in a technologically enhanced environment: The impact of teacher-guided and student-centered instructional approaches on the process of students' conceptual change. Science Education, 92(2), 320-344. doi: 10.1002/sce.20242
  32. Jang, S. J. (2006). The Effects of Incorporating Web assisted Learning with Team Teaching in Seventh grade Science Classes. International Journal of Science Education, 28(6), 615-632. doi: 10.1080/09500690500339753
  33. Jones, M. G., Minogue, J., Tretter, T. R., Negishi, A., & Taylor, R. (2006). Haptic augmentation of science instruction: Does touch matter? Science Education, 90(1), 111-123. doi: 10.1002/sce.20086
  34. Kafai, Y. (2008). Understanding Virtual Epidemics: Childrens Folk Conceptions of a Computer Virus. Journal of Science Education and Technology, 17(6), 523-529. doi: 10.1007/s10956-008-9102-x
  35. Kay, R., & Knaack, L. (2007). Evaluating the Use of Learning Objects for Secondary School Science. Journal of Computers in Mathematics and Science Teaching, 26(4), 261-289.
  36. Kerlin, S., Carlsen, W., Kelly, G., & Goehring, E. (2013). Global Learning Communities: A Comparison of Online Domestic and International Science Class Partnerships. Journal of Science Education and Technology, 22(4), 475-487. doi: 10.1007/s10956-012-9407-7
  37. Ketelhut, D. (2007). The Impact of Student Self-efficacy on Scientific Inquiry Skills: An Exploratory Investigation in River City, a Multi-user Virtual Environment. Journal of Science Education and Technology, 16(1), 99-111. doi: 10.1007/s10956-006-9038-y
  38. Klisch, Y., Miller, L., Wang, S., & Epstein, J. (2012). The Impact of a Science Education Game on Students Learning and Perception of Inhalants as Body Pollutants. Journal of Science Education and Technology, 21(2), 295-303. doi: 10.1007/s10956-011-9319-y
  39. Kukkonen, J. E., KŠrkkŠinen, S., Dillon, P., & Keinonen, T. (2013). The Effects of Scaffolded Simulation-Based Inquiry Learning on Fifth-Graders' Representations of the Greenhouse Effect. International Journal of Science Education, 36(3), 406-424. doi: 10.1080/09500693.2013.782452
  40. Lamb, R., & Annetta, L. (2013). The Use of Online Modules and the Effect on Student Outcomes in a High School Chemistry Class. Journal of Science Education and Technology, 22(5), 603-613. doi: 10.1007/s10956-012-9417-5
  41. Lee, H.-S., Linn, M. C., Varma, K., & Liu, O. L. (2010). How do technology-enhanced inquiry science units impact classroom learning? Journal of Research in Science Teaching, 47(1), 71-90. doi: 10.1002/tea.20304
  42. Levy, D. (2013). How Dynamic Visualization Technology can Support Molecular Reasoning. Journal of Science Education and Technology, 22(5), 702-717. doi: 10.1007/s10956-012-9424-6
  43. Lowe, D., Newcombe, P., & Stumpers, B. (2013). Evaluation of the Use of Remote Laboratories for Secondary School Science Education. Research in Science Education, 43(3), 1197-1219. doi: 10.1007/s11165-012-9304-3
  44. Lumpe, A., & Butler, K. (2002). The Information Seeking Strategies of High School Science Students. Research in Science Education, 32(4), 549-566. doi: 10.1023/A:1022415924768
  45. Marino, M., Israel, M., Beecher, C., & Basham, J. (2013). StudentsÕ and TeachersÕ Perceptions of Using Video Games to Enhance Science Instruction. Journal of Science Education and Technology, 22(5), 667-680. doi: 10.1007/s10956-012-9421-9
  46. McElhaney, K. W., & Linn, M. C. (2011). Investigations of a complex, realistic task: Intentional, unsystematic, and exhaustive experimenters. Journal of Research in Science Teaching, 48(7), 745-770. doi: 10.1002/tea.20423
  47. Mistler-Jackson, M., & Butler Songer, N. (2000). Student Motivation and Internet Technology: Are Students Empowered to Learn Science? Journal of Research in Science Teaching, 37(5), 459-479. doi: 10.1002/(SICI)1098-2736(200005)37:5<459::AID-TEA5>3.0.CO;2-C
  48. Morgan, K., & Brooks, D. (2012). Investigating a Method of Scaffolding Student-Designed Experiments. Journal of Science Education and Technology, 21(4), 513-522. doi: 10.1007/s10956-011-9343-y
  49. Nelson, B. (2007). Exploring the Use of Individualized, Reflective Guidance In an Educational Multi-User Virtual Environment. Journal of Science Education and Technology, 16(1), 83-97. doi: 10.1007/s10956-006-9039-x
  50. Neulight, N., Kafai, Y., Kao, L., Foley, B., & Galas, C. (2007). ChildrenÕs Participation in a Virtual Epidemic in the Science Classroom: Making Connections to Natural Infectious Diseases. Journal of Science Education and Technology, 16(1), 47-58. doi: 10.1007/s10956-006-9029-z
  51. Nicolaidou, I., Kyza, E. A., Terzian, F., Hadjichambis, A., & Kafouris, D. (2011). A framework for scaffolding students' assessment of the credibility of evidence. Journal of Research in Science Teaching, 48(7), 711-744. doi: 10.1002/tea.20420
  52. Pallant, A., & Tinker, R. (2004). Reasoning with Atomic-Scale Molecular Dynamic Models. Journal of Science Education and Technology, 13(1), 51-66. doi: 10.1023/B:JOST.0000019638.01800.d0
  53. Park, H., Khan, S., & Petrina, S. (2009). ICT in Science Education: A quasi experimental study of achievement, attitudes toward science, and career aspirations of Korean middle school students. International Journal of Science Education, 31(8), 993-1012. doi: 10.1080/09500690701787891
  54. Pata, K., & Sarapuu, T. (2006). A Comparison of Reasoning Processes in a Collaborative Modelling Environment: Learning about genetics problems using virtual chat. International Journal of Science Education, 28(11), 1347-1368. doi: 10.1080/09500690500438670
  55. Riess, W., & Mischo, C. (2009). Promoting Systems Thinking through Biology Lessons. International Journal of Science Education, 32(6), 705-725. doi: 10.1080/09500690902769946
  56. Ryoo, K., & Linn, M. C. (2012). Can dynamic visualizations improve middle school students' understanding of energy in photosynthesis? Journal of Research in Science Teaching, 49(2), 218-243. doi: 10.1002/tea.21003
  57. Ryoo, K., & Linn, M. C. (2014). Designing guidance for interpreting dynamic visualizations: Generating versus reading explanations. Journal of Research in Science Teaching, 51(2), 147-174. doi: 10.1002/tea.21128
  58. She, H.-C., & Liao, Y.-W. (2010). Bridging scientific reasoning and conceptual change through adaptive web-based learning. Journal of Research in Science Teaching, 47(1), 91-119. doi: 10.1002/tea.20309
  59. Shegog, R., Lazarus, M., Murray, N., Diamond, P., Sessions, N., & Zsigmond, E. (2012). Virtual Transgenics: Using a Molecular Biology Simulation to Impact Student Academic Achievement and Attitudes. Research in Science Education, 42(5), 875-890. doi: 10.1007/s11165-011-9216-7
  60. Shen, J., & Linn, M. C. (2010). A Technology Enhanced Unit of Modeling Static Electricity: Integrating scientific explanations and everyday observations. International Journal of Science Education, 33(12), 1597-1623. doi: 10.1080/09500693.2010.514012
  61. Smetana, L. K., & Bell, R. L. (2012). Computer Simulations to Support Science Instruction and Learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337-1370. doi: 10.1080/09500693.2011.605182
  62. Stieff, M. (2011). Improving representational competence using molecular simulations embedded in inquiry activities. Journal of Research in Science Teaching, 48(10), 1137-1158. doi: 10.1002/tea.20438
  63. Sun, D., & Looi, C.-K. (2013). Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry. Journal of Science Education and Technology, 22(1), 73-89. doi: 10.1007/s10956-012-9377-9
  64. Svihla, V., & Linn, M. C. (2011). A Design-based Approach to Fostering Understanding of Global Climate Change. International Journal of Science Education, 34(5), 651-676. doi: 10.1080/09500693.2011.597453
  65. Tekos, G., & Solomonidou, C. (2009). Constructivist Learning and Teaching of Optics Concepts Using ICT Tools in Greek Primary School: A Pilot Study. Journal of Science Education and Technology, 18(5), 415-428. doi: 10.1007/s10956-009-9158-2
  66. Tsai, C.-Y., Jack, B., Huang, T.-C., & Yang, J.-T. (2012). Using the Cognitive Apprenticeship Web-based Argumentation System to Improve Argumentation Instruction. Journal of Science Education and Technology, 21(4), 476-486. doi: 10.1007/s10956-011-9339-7
  67. Tsui, C.-Y., & Treagust, D. (2003). Genetics Reasoning with Multiple External Representations. Research in Science Education, 33(1), 111-135. doi: 10.1023/A:1023685706290
  68. Tsui, C.-Y., & Treagust, D. F. (2007). Understanding genetics: Analysis of secondary students' conceptual status. Journal of Research in Science Teaching, 44(2), 205-235. doi: 10.1002/tea.20116
  69. Tsui, C. Y., & Treagust *, D. F. (2004). Conceptual change in learning genetics: an ontological perspective. Research in Science & Technological Education, 22(2), 185-202. doi: 10.1080/0263514042000290895
  70. Turcotte, S. (2012). Computer-Supported Collaborative Inquiry on Buoyancy: A Discourse Analysis Supporting the ÒPiecesÓ Position on Conceptual Change. Journal of Science Education and Technology, 21(6), 808-825. doi: 10.1007/s10956-012-9368-x
  71. †len, S.,  agran, B., Slavinec, M., & Gerli , I. (2014). Designing and Evaluating the Effectiveness of Physlet-Based Learning Materials in Supporting Conceptual Learning in Secondary School Physics. Journal of Science Education and Technology, 23(5), 658-667. doi: 10.1007/s10956-014-9492-x
  72. van Borkulo, S., van Joolingen, W., Savelsbergh, E., & de Jong, T. (2012). What Can Be Learned from Computer Modeling? Comparing Expository and Modeling Approaches to Teaching Dynamic Systems Behavior. Journal of Science Education and Technology, 21(2), 267-275. doi: 10.1007/s10956-011-9314-3
  73. van Rens, L., Hermarij, P., Pilot, A., Beishuizen, J., Hofman, H., & Wal, M. (2014). Pre-university Chemistry Students in a Mimicked Scholarly Peer Review. International Journal of Science Education, 36(15), 2514-2533. doi: 10.1080/09500693.2014.895447
  74. Varma, K., & Linn, M. (2012). Using Interactive Technology to Support Students Understanding of the Greenhouse Effect and Global Warming. Journal of Science Education and Technology, 21(4), 453-464. doi: 10.1007/s10956-011-9337-9
  75. Waight, N., & Abd-El-Khalick, F. (2011). From scientific practice to high school science classrooms: Transfer of scientific technologies and realizations of authentic inquiry. Journal of Research in Science Teaching, 48(1), 37-70. doi: 10.1002/tea.20393
  76. Waight, N., & Gillmeister, K. (2014). Teachers and StudentsÕ Conceptions of Computer-Based Models in the Context of High School Chemistry: Elicitations at the Pre-intervention Stage. Research in Science Education, 44(2), 335-361. doi: 10.1007/s11165-013-9385-7
  77. Williams, M., DeBarger, A. H., Montgomery, B. L., Zhou, X., & Tate, E. (2012). Exploring middle school students' conceptions of the relationship between genetic inheritance and cell division. Science Education, 96(1), 78-103. doi: 10.1002/sce.20465
  78. Williams, M., & Linn, M. (2002). WISE Inquiry in Fifth Grade Biology. Research in Science Education, 32(4), 415-436. doi: 10.1023/A:1022452719316
  79. Wu, H.-K., & Huang, Y.-L. (2007). Ninth-grade student engagement in teacher-centered and student-centered technology-enhanced learning environments. Science Education, 91(5), 727-749. doi: 10.1002/sce.20216
  80. Yang, K.-Y., & Heh, J.-S. (2007). The Impact of Internet Virtual Physics Laboratory Instruction on the Achievement in Physics, Science Process Skills and Computer Attitudes of 10th-Grade Students. Journal of Science Education and Technology, 16(5), 451-461. doi: 10.1007/s10956-007-9062-6
  81. Yarden, H., & Yarden, A. (2010). Learning Using Dynamic and Static Visualizations: Students Comprehension, Prior Knowledge and Conceptual Status of a Biotechnological Method. Research in Science Education, 40(3), 375-402. doi: 10.1007/s11165-009-9126-0
  82. Yen, H.-C., Tuan, H.-L., & Liao, C.-H. (2011). Investigating the Influence of Motivation on StudentsÕ Conceptual Learning Outcomes in Web-based vs. Classroom-based Science Teaching Contexts. Research in Science Education, 41(2), 211-224. doi: 10.1007/s11165-009-9161-x
  83. Yerushalmi, E., Puterkovsky, M., & Bagno, E. (2013). Knowledge Integration While Interacting with an Online Troubleshooting Activity. Journal of Science Education and Technology, 22(4), 463-474. doi: 10.1007/s10956-012-9406-8
  84. Yoon, S. A. (2007). An Evolutionary Approach to Harnessing Complex Systems Thinking in the Science and Technology Classroom. International Journal of Science Education, 30(1), 1-32. doi: 10.1080/09500690601101672
  85. Zhang, Z. H., & Linn, M. C. (2011). Can generating representations enhance learning with dynamic visualizations? Journal of Research in Science Teaching, 48(10), 1177-1198. doi: 10.1002/tea.20443
  86. Zhang, Z. H., & Linn, M. C. (2013). Learning from Chemical Visualizations: Comparing generation and selection. International Journal of Science Education, 35(13), 2174-2197. doi: 10.1080/09500693.2013.792971
  87. Zheng, B., Warschauer, M., Hwang, J., & Collins, P. (2014). Laptop Use, Interactive Science Software, and Science Learning Among At-Risk Students. Journal of Science Education and Technology, 23(4), 591-603. doi: 10.1007/s10956-014-9489-5
  88. Zion, M. (2008). On line Forums as a `Rescue Net' in an Open Inquiry Process. International Journal of Science and Mathematics Education, 6(2), 351-375. doi: 10.1007/s10763-006-9051-x
  89. Zucker, A., & Hug, S. (2008). Teaching and Learning Physics in a 1:1 Laptop School. Journal of Science Education and Technology, 17(6), 586-594. doi: 10.1007/s10956-008-9125-3
  90. Zucker, A., Kay, R., & Staudt, C. (2014). Helping Students Make Sense of Graphs: An Experimental Trial of SmartGraphs Software. Journal of Science Education and Technology, 23(3), 441-457. doi: 10.1007/s10956-013-9475-3